
1

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

(9A05803) WEB SERVICES

(ELECTIVE - III)

UNIT III

Web services Architecture: web services architecture and its characteristics, core building

blocks of web services, standards and technologies available for implementing web services,

web services communication, basic steps of implementing web services, developing web services

enabled applications.

Web services architecture and its characteristics:

1Q. what are the characteristics of the web services architecture?

Characteristics of web services:

The Web services architecture represents the logical evolution of traditional computer-based

applications to services-oriented applications over the Internet. It defines a distributed

computing mechanism by adopting a service-oriented architecture (SOA), where all of the

applications are encapsulated as services and made available for invocation over a network.

These services can be leveraged from different applications and platforms with varying

technologies adopting common industry standards and platform-independent and language-

neutral Internet protocols for enabling application interoperability, thus making them easily

accessible over the Internet.

In addition, it provides a mechanism for categorizing and registering the services in a

common location by making them available for discovery and collaboration over the Internet

or corporate networks.

Using Web services architecture and adhering to its standards also exposes existing and

legacy applications as Web services, and the clients invoking these services do not require

that they are aware of their target system environment and its underlying implementation

model.

Core Building blocks of Web services:

2Q. What are the key design requirement of the web services architecture

The basic principles behind the Web services architecture are based on SOAand the Internet

protocols. It represents a composable application solution based on standards and standards-

based technologies.

Some of the key design requirements of the Web services architecture are the following:

� To provide a universal interface and a consistent solution model to define the

application as modular components, thus enabling them as exposable services

� To define a framework with a standards-based infrastructure model and protocols to

support services-based applications over the Internet

� To address a variety of service delivery scenarios ranging from e-business (B2C),

business-to-business (B2B), peer-to-peer (P2P), and enterprise application integration

(EAI)-based application communication

2

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

� To enable distributable modular applications as a centralized and decentralized

application environment that supports boundary-less application communication for

inter-enterprise and intra-enterprise application connectivity

� To enable the publishing of services to one or more public or private directories, thus

enabling potential users to locate the published services using standard-based

mechanisms that are defined by standards organizations.

� To enable the invocation of those services when it is required, subject to

authentication, authorization, and other security measures

3Q. Explain the core building blocks of web services architecture? (or) Draw and explain the

web services architecture

A typical Web service architectural model consists of three key logical components as core

building blocks mapping the operational roles and relationships of a Web services

environment. Figure 3.1 represents the core building blocks of a typical Web services

architecture.

Services container/runtime environment. The services container acts as the Web services

runtime environment and hosts the service provider. Typical to a Web application

environment, it defines the Web services runtime environment meant for client

communication as a container of Web services interfaces by exposing the potential

components of the underlying applications.

It facilitates the service deployment and services administration. In addition, it also

handles the registration of the service description with the service registries.

Usually, the Web services platform provider implements the services container. the

Web application servers provide system services and APIs that can be leveraged as the Web

services container.

3

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

Services registry. The services registry hosts the published services and acts as a broker

providing a facility to publish and store the description of Web services registered by the

service providers. In addition, it defines a common access mechanism for the service

requestors for locating the registered services.

Services delivery. It acts as the Web services client runtime environment by looking up the

services registries to find the required services and invoking them from the service provider.

It is represented as a presentation module for service requestors, by exposing the appropriate

interfaces or markups for generating content and delivery to a variety of client applications,

devices, platforms, and so forth.

To build the Web services architecture with these logical components, we need to use

standardized components and a communication model for describing and invoking the

services that are universally understood between the service providers and their potential

service requestors. It also requires a standard way to publish the services by the service

provider and store them in the service broker. In turn, service requestors can find them.

WSDL. This resides in the services container and provides a standardized way to describe the

Web services as a service description. In ebXML-based architecture, ebXML CPP/A

provides services descriptions including business partner profiles and agreements.

UDDI. This provides a standard mechanism for publishing and discovering registered Web

services, and it also acts as the registry and repository to store WSDL-based service

descriptions. In ebXMLbased architecture, ebXML Registry & Repository provides a facility

to store CPP/CPA descriptions for business collaboration.

Standards and Technologies available for implementing web services. or Tools of the

Trade

4Q. Write a short notes on the following:

I. SOAP

II. WSDL

III. UDDI

IV. ebXML

or

Explain about the standards and technologies for implementing the web services

Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol, or SOAP, plays the role of the messaging protocol for

exchanging information between the service provider and the service requestor. It consists of

the following:

SOAP Envelope. It describes the message, identifying the contents and the envelope’s

processing information.

SOAP Transport. It defines the bindings for the underlying transport protocols such as

HTTP and SMTP.

SOAP Encoding. It defines a set of encoding rules for mapping the instances of the

application-specific data types to XML elements.

SOAP RPC conventions. It defines the representation of the RPC requests and responses.

These SOAP requests and responses are marshaled in a data type and passed in to a SOAP

body.

4

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

Example 3.1 represents a SOAP message using an HTTP post request for sending a

getBookPrice() method with <bookname> as an argument to obtain a price of a book.

Web Services Description Language (WSDL)

The Web Services Description Language, or WDDL, is an XML schemabased specification

for describing Web services as a collection of operations and data input/output parameters as

messages. WSDL also defines the communication model with a binding mechanism to attach

any transport protocol, data format, or structure to an abstract message, operation, or

endpoint.

Universal Description, Discovery, and Integration (UDDI)

Universal Description, Discovery, and Integration, or UDDI, defines a mechanism to register

and categorize Web services in a general-purpose registry that users communicate to in order

to discover and locate registered services. While querying a UDDI registry for a service, the

WSDL description describing the service interface will be returned. Using the

WSDLdescription, the developer can construct a SOAP client interface that can communicate

with the service provider

UDDI can be implemented as a public registry to support the requirements of a global

community or as a private registry to support an enterprise or a private community.

5

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

ebXML

ebXML provides a standard framework for building an electronic marketplace by enabling

the standardization of business processes, business partner profiles, and partner agreements.

In general, ebXML complements other Web services standards like SOAP, WSDL, and

UDDI.

The following are major features of ebXML:

■■ ebXML Messaging Service (MS) is a value-add over SOAP that provides reliability and

security mechanisms.

■■ ebXML BPSS enables business processes to be described.

■■ ebXML CPP/CPA is a value-add over WSDL that enables business partner profiles and

partner agreements to be described.

■■ ebXML reg/rep provides a registry and repository, while UDDI is just a registry.

■■ ebXML Core components provide a catalogue of business process components for the

business community.

Web Services Communication Models

5Q. Explain in detail webs services communication models

In Web services architecture, depending upon the functional requirements, it is possible to

implement the models with RPC-based synchronous or messaging-based

synchronous/asynchronous communication models. These communication models need to be

understood before Web services are designed and implemented.

RPC-Based Communication Model: The RPC-based communication model defines a

request/response-based synchronous communication. When the client sends a request, the

client waits until a response is sent back from the server before continuing any operation.

Typical to implementing CORBA or RMI communication, the RPC-based Web services are

tightly coupled and are implemented with remote objects to the client application. Figure 3.3

represents an RPC-based communication model in Web services architecture.

6

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

The clients have the capability to provide parameters in method calls to the Web service

provider. Then, clients invoke the Web services by sending parameter values to the Web

service provider that executes the required methods, and then sends back the return values.

Additionally, using RPCbased communication, both the service provider and requestor can

register and discover services, respectively.

Messaging-Based Communication Model

The messaging-based communication model defines a loosely coupled and document-driven

communication. The service requestor invoking a messaging-based service provider does not

wait for a response. Figure 3.4 represents a messaging-based communication model in Web

services architecture.

In Figure 3.4, the client service requestor invokes a messaging-based Web service; it

typically sends an entire document rather than sending a set of parameters. The service

provider receives the document, processes it, and then may or may not return a message.

Depending upon the implementation, the client can either send or receive a document

asynchronously to and from a messaging-based Web service, but it cannot do both

functionalities at an instant.

In addition, it also is possible to implement messaging with a synchronous communication

model where the client makes the service request to the service provider, and then waits and

receives the document from the service provider.

Adopting a communication model also depends upon the Web service provider infrastructure

and its compliant protocol for RPC and Messaging. The current version of SOAP 1.2 and

ebXML Messaging support these communication models; it is quite important to ensure that

the protocols are compliant and supported by the Web services providers. It also is important

to satisfy other quality of services (QoS) and environmental requirements like security,

reliability, and performance.

7

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

Basic steps for implementing the web services:

6Q. With a neat diagram explain the process of implementing the web services

The process of implementing Web services is quite similar to implementing any distributed

application using CORBA or RMI. However, in Web services, all the components are bound

dynamically only at its runtime using standard protocols. Figure 3.5 illustrates the process

highlights of implementing Web services.

the basic steps of implementing Web services are as follows:

1. The service provider creates the Web service typically as SOAPbased service interfaces for

exposed business applications. The provider then deploys them in a service container or using

a SOAP runtime environment, and then makes them available for invocation over a network.

The service provider also describes the Web service as a WSDL-based service description,

which defines the clients and the service container with a consistent way of identifying the

service location, operations, and its communication model.

2. The service provider then registers the WSDL-based service description with a service

broker, which is typically a UDDI registry.

8

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

3. The UDDI registry then stores the service description as binding templates and URLs to

WSDLs located in the service provider environment.

4. The service requestor then locates the required services by querying the UDDI registry.

The service requestor obtains the binding information and the URLs to identify the service

provider.

5. Using the binding information, the service requestor then invokes the service provider and

then retrieves the WSDL Service description for those registered services. Then, the service

requestor creates a client proxy application and establishes communication with the service

provider using SOAP.

6. Finally, the service requestor communicates with the service provider and exchanges data

or messages by invoking the available services in the service container.

In the case of an ebXML-based environment, the steps just shown are the same,

except ebXML registry and repository, ebXML Messaging, and ebXML CPP/CPA are used

instead of UDDI, SOAP, and WSDL, respectively. The basic steps just shown also do not

include the implementation of security and quality of service (QoS) tasks.

Developing Web services enabled applications:

7Q. Explain how to develop web services enabled applications

The design and development process of creating a Web services-enabled application is not

different from the typical process of developing a distributed application. In case of Web

services, it can be created as a new application or from using an existing application by

repurposing them as services.

In a Web services implementation, it also is possible to expose existing/ legacy applications

as services by encapsulating the core business functionalities of those underlying

applications. The underlying applications can be of any application implemented in any

programming language and running on any platform.

Figure 3.6 represents a typical Web services implementation model providing service-

oriented interfaces supporting a variety of back-end application environments.

9

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

The implementation steps generally involved in developing Web services solutions by

exposing back-end business applications are as follows:

1. The potential business component of the underlying application will be encapsulated

as service-oriented interfaces using SOAP and then exposed as Web services by

deploying them in a Web services service container or a SOAP runtime environment.

Using those SOAP-based interfaces, the service container handles all the incoming

SOAP requests/responses or messaging-based operations and maps them as methods

and arguments of the underlying business application.

2. WSDL-based service descriptions will be generated and then reside in a service

container. WSDL defines the communication contract required for invoking the

SOAP-based service interfaces. These WSDL-based service descriptions will be

published in a UDDI registry as service templates and its location URLs. The

interfaces required for publishing in the UDDI registry are usually provided by the

Web service container provider.

3. The service requester finds the services using the discovery mechanisms (registry

API) and obtains the service description and its provider location URL. It then

connects to the service provider to obtain WSDL.

4. To invoke the services exposed by the service provider, the service requestor (service

delivery environment) is required to implement SOAP-based client interfaces

according to the service description defined in the WSDL.

The Web services container/runtime environment provider generally provides the tools

required for creating SOAP-based services interfaces from existing applications and

generating WSDL-based service descriptions. Depending upon the Web services runtime

environment.

The previous steps are usually common at all levels of Web services development,

irrespective of the target application environment such as J2EE, CORBA, Microsoft .NET, or

standalone applications based on Java, C++, Microsoft Visual Basic, and legacy applications

based on, the Mainframe environment. As a result, implementing Web services unifies J2EE,

CORBA, .NET, and other XML-based applications with interoperability and data sharing.

How to Develop Java-Based Web Services

8Q. Explain how to develop web services from J2EE applications

With the overwhelming success of Java in Web and pervasive applications running on a

variety of platforms and devices, the Java platform has become the obvious choice for

enterprise architects and developers. In addition to the Java platform, today the J2EE-based

application environment also has become the preferred solution for running Web

servicesbased solutions.

Building Web Services in the J2EE Environment

The process of building Web services using a J2EE environment involves exposing J2EE

components such as servlets and EJBs. In addition, J2EE applications also can access these

exposed services using standard protocols.

10

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

In a typical implementation, a J2EE-based Web services model defines another way of

exposing their business components similar to Web applications and RMI/IIOP-based

application connectivity and without changing the architectural model or code of the existing

J2EE components. For example, in a J2EE-based application server environment, J2EE

components can be exposed for remote access through RMI/IIOP. In the case of a Web

service provider using a J2EE environment, in addition to RMI/IIOP, it also is possible to

expose those components as a service via WSDL and handle the exposed service by sending

and receiving SOAP-based requests/responses or messages.

The following steps are commonly involved in creating Web services from a J2EE-based

application component:

1. Select a Web services platform provider, which provides a consistent platform for building

and deploying Web services over the J2EE applications.

2. Define a Web service-enabled application and its behavior.

a. Select the potential J2EE components (for example, EJBs, Servlets, and JMS applications)

that are required to be exposed as services or are using the existing services.

b. Choose the communication model (RPC-based synchronous or messaging-based

asynchronous) depending upon the required behavior of the underlying components (for

example, Session or Entity EJBs using RPC-based communication or JMS applications using

messaging-based communication).

c. Ensure that the service uses only built-in/custom data types mapping for XML and Java

supported by the Web services container. This applies only to RPC-based communication

models.

3. Develop the Web service by writing the interfaces required for accessing the exposed

components (for example, EJBs, Servlets, and JMS applications).

a. Develop the potential J2EE component (for example, EJBs, Servlets, and JMS

applications) that are required and deploy them in a J2EE-compliant container. Ensure that

the data types used by the components are supported in the XML/Java mappings defined by

the provider.

b. Implement the SOAP message handlers.

4. Assemble the required components into a required structure (defined by the Web services

platform provider), additionally creating the deployment descriptors for the services (as

defined by the Web services platform provider) and package them as a deployable EAR.

a. Most Web service platform vendors provide utility tools to generate Web services

components (SOAP interfaces) by introspecting the components (especially its methods and

values) and mapping them to its supported data types.

11

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

b. Also it is important to note, the upcoming release of the J2EE 1.4 specification is expected

to provide a complete J2EE-based Web services platform and would enable the deployment

of J2EE components as Web services.

5. Deploy the Web service components in the Web services container and make them

available to its remote clients (based on the required protocol bindings such as HTTP and

SMTP).

6. Create test clients for invoking the deployed Web services.

7. Register and publish your Web service in a UDDI registry, in case you require enabling the

service available by searching public/private UDDI registries for Web services.

J2EE and Java Web Services Developer Pack (JWSDP)

9Q. Write a short notes on JWSDP

Sun Microsystems as part of its Java community process has already released its Java API for

Web Services for the developer community as the Java Web Services Developer Pack

(JWSDP). It provides a full-fledged solution package for developing and testing Web

services using the Java APIs. In addition, leading Web services platform providers like

Systinet, CapeClear, and Mind Electric and leading J2EE vendors like BEA, IBM, and Sun

iPlanet also released their Web services capabilities, adopting a Java platform and supporting

Java APIs for Web services as per JWSDP.

JWSDP 1.0 provides a one-stop Java API solution for building Web services using a Java

platform. The key API components include the following:

■■ Java API for XML Messaging (JAXM)

■■ Java API for XML Processing (JAXP)

■■ Java API for XML Registries (JAXR)

■■ Java API for XML Binding (JAXB)

■■ Java API for XML-Based RPC (JAX-RPC)

■■ Java WSDP Registry Server (JWSDP)

■■ Java Server Pages Standard Tag Library (JSTL)

Leading J2EE application server vendors have announced their support to this effort and also

started releasing their JWSDP API implementation. This helps the developers to build Web

services by exposing their existing J2EE applications.

12

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

Exposing J2EE Components as Web Services

10Q. Explain in detail the development of web services by exposing J2EE components

devployed in a J2EE application server

The J2EE environment delivers platform-independent Java component-based applications

providing a multi-tiered distributed application model with several advantages like security,

scalability, administration tools, portability between vendor implementations, and reliability

of deployed applications. In general, it defines the following components residing in different

logical tiers:

■■ JavaServer Pages (JSP) and Java Servlet-based components act as Web components

running on the Web/Servlet container of the J2EE server.

■■ Enterprise JavaBeans (EJB)-based components act as business or persistence components

running on the EJB container of the J2EE server.

■■ JDBC (Java Database connectivity) and J2EE connector architecturebased components

act as the integration tier of the J2EE server for integrating database applications and

enterprise information systems.

The key differences between J2EE components and traditional Java applications is that J2EE

components are assembled and deployed into a J2EE application server in compliance with

the J2EE specification. These components are managed by J2EE server system services such

as synchronization, multithreading, and connecting pooling. Additionally, the J2EE server

implementation also provides capabilities like clustering, transaction coordination,

messaging, and database connection pooling.

In short, developing Web services from J2EE-based applications requires the implementation

of components using J2EE component APIs (such as EJBs and servlets), then packaging and

deploying them in a J2EE container environment as target enterprise applications. The

components are then hosted in a J2EE-compliant application server. Exposing these J2EE

components as Web services also requires a Web services container environment, which

enables the creation and deployment of SOAP-based proxy interfaces.

A typical scenario, exposing a J2EE-based application component as Web services involves

the steps in the following list:

STEPS FOR THE SERVICE PROVIDER

1. The potential J2EE component deployed in an application server environment will be

encapsulated as a service-oriented interface using SOAP and then deployed in a Web

services runtime environment.

2. WSDL-based service descriptions are generated and then reside in the services

runtime environment. The service requestor clients create SOAP-based client

interfaces using the WSDL-based descriptions.

3. Using registry APIs, WSDLs are used for publishing the services in a public/private

UDDI registry.

13

Web Services- UNIT III SREC-NDL SSSS.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ.MD.FAROOQ

STEPS FOR THE SERVICE REQUESTOR

1. The service requestor clients create SOAP-based client interfaces using the WSDL-

based descriptions exposed by the service provider.

2. The service requestor may choose to use any language for implementing the client

interfaces, but it must support the use of SOAP for communication.

3. These client interfaces then are used to invoke the service provider deployed services

